

(Autonomous)

Faculty: Science

Program: B.Sc.

Subject: BIOTECHNOLOGY

Academic Year: 2021 – 2022

F.Y.B.Sc. Biotechnology

Credit Based Semester and Grading Syllabi approved by Board of Studies in Biotechnology to be brought into effect from June 2021.

PREAMBLE:

Biotechnology, broadly defined, includes any technique that uses living organisms, or parts of such organisms, to make or modify products, to improve plants or animals, or to develop microorganisms for specific use. The interdisciplinary nature of biotechnology integrates living systems including animal, plant and microbes and their studies from molecular biology to cell biology, from biochemistry to biophysics, from genetic engineering to stem cell research, from bioinformatics to genomics-proteomics, from environmental biology to biodiversity, from microbiology to bioprocess engineering, from bioremediation to material transformation and so on. Biotechnology is the science of today and tomorrow. It has applications in all major service sectors i.e. health, agriculture, industry, environment etc. Biotechnology as an application science has taken firm footing in many countries, abroad where a number of transgenic crops, genetically modified food and recombinant therapeutic molecules for human and animal health are available in the market. Biotechnology as a science of service to human society is yet to make inroads in India

With the advent of World Wide Web in the early nineties and its subsequent growth, the latest research trends have become accessible from drawing rooms across the globe. This acted as a positive feedback mechanism in increasing the pace of research in all fields including Chemical Engineering and Bio-technology. This was the motivation for an in depth analysis of what is actually required for today's technology. It is also important to take advantage of the freely available software to enhance the quality and quantity of material that can be covered in the class room.

This restructured syllabus is therefore intended to combine the principles of physical, chemical and biological sciences along with developing advanced technology. The undergraduate curricula is prepared to impart primarily basic knowledge of the respective subject from all possible aspects. In addition, students will be trained to apply this knowledge particularly in day-to-day applications of biotechnology and hence get a flavor of research.

PROGRAM SPECIFIC OUTCOMES:

An undergraduate student upon completion of this program is expected to gain the following attributes:

- Understand and describe the nature of the basic concepts of Cell biology, Microbiology Chemistry and Biochemistry with an interdisciplinary perspective about of other branches of Life Sciences.
- Explain the application of Biotechnology in the field of Medicine, Agriculture, Environment and sustainable development.
- Describe and explain the concepts of Immunology, Neurochemistry recombinant DNA technology and correlate them towards diagnosis and therapy of diseases and understanding how they can contribute towards the alleviation of human suffering.
- Discover and examine the causes of environmental pollution and devise methods to control the release of biohazardous waste into the environment.
- Perform practical as per laboratory standards in Chemistry, Biochemistry, Microbiology and Molecular Biology Understand and analyze the results.
- Effectively communicate using ICT enabled tools and Critically analyze and explain the data in a lucid manner.

F.Y.B.Sc BIOTECHNOLOGY

SEMESTER I

Course Code	Course Type	Course Title	Credits	Lectures/week
SIUSBT11	Core Subject	Basic Chemistry I	2	3
SIUSBT12	Core Subject	Bioorganic Chemistry	2	3
SIUSBT13	Core Subject	Basic Life Sciences I: Biodiversity and Cell Biology	2	3
SIUSBT14	Core Subject	Basic Life Sciences II: Microbial Techniques	2	3
SIUSBT15	Core Subject	Basic Biotechnology I: Introduction to Biotechnology	2	3
SIUSBT16	Core Subject	Basic Biotechnology II: Molecular Biology and Genetics	2	3
SIUSBT17	Ability Enhancement Course 1 (FC I)	Societal Awareness	2	3
SIUSBTP18 SIUSBTP19, SIUSBTP20	Core Subject Practicals	Practicals of SIUSBT11, SIUSBT12, SIUSBT13, SIUSBT14, SIUSBT15 and SIUSBT16	6	18

SEMESTER II

Course Code	Course Type	Course Title	Credits	Lectures/week
SIUSBT21	Core Subject	Basic Chemistry II	2	3
SIUSBT22	Core Subject	Physical Chemistry	2	3
SIUSBT23	Core Subject	Basic Life Sciences I: Physiology and Ecology	2	3
SIUSBT24	Core Subject	Basic Life Sciences II: Genetics and rDNA Technology	2	3
SIUSBT25	Core Subject	Basic Biotechnology I: Microbial Techniques and Tissue Culture	2	3
SIUSBT26	Core Subject	Basic Biotechnology II: Enzymology and Immunology	2	3
SIUSBT27	Ability Enhancement Course 1 (FC I)	Globalization, Ecology and Sustainable Development	2	3
SIUSBTP28, SIUSBTP29, SIUSBTP30	Core Subject Practicals	Practicals of SIUSBT21, SIUSBT22, SIUSBT23, SIUSBT24, SIUSBT25 and SIUSBT26	6	18

COURSE CODE	TITLE	CREDITS	LECTURES
		CREDITS	LECTURES
SIUSBT11	BASIC CHEMISTRY I		
Course Outcomes	On successful completion of the course, the student will un chemistry like nomenclature, chemical bonds and stereochem problem solving, critical thinking and analytical reasoning as	istry. Learner w	ill be skilled in
Unit I Nomenclature and Classification	 Nomenclature and Classification of Inorganic Compounds: Oxides, Salts, Acids, Bases, Ionic, Molecular and Coordination Compounds Nomenclature and Classification of Organic Compounds: Alkanes, Alkenes, Alkynes, Cyclic Hydrocarbons, Aromatic Compounds, Alcohols and Ethers, Aldehydes and Ketones, Carboxylic Acids and its derivatives, Amines, Amides, Alkyl Halides and Heterocyclic Compounds 		15
Unit II Chemical Bonds	Bond length and bond order Ionic Bond: Nature of Ionic Bond, Structure of NaCl, KCl and CsCl, Factors influencing the formation of ionic bond Covalent Bond: Nature of covalent bond, Structure of CH4, NH3, H2O, Shapes of BeCl2, BF3 Coordinate Bond: Nature of Coordinate Bond Non-Covalent Bonds: Van Der Waal 's forces: dipole - dipole, dipole – induced dipole Hydrogen Bond: Theory of hydrogen bonding, Types of hydrogen bonding (with examples of RCOOH, ROH, Salicylaldehyde, Amides and Polyamides)	2	15
Unit III Stereochemistry	 Isomerism – Types of Isomerism: Constitutional Isomerism (Chain, Position and Functional) and Stereoisomerism, Chirality, Isomerism in Coordination Compounds Geometric Isomerism and Optical Isomerism: Enantiomers, Diastereomers, and Racemic mixtures Cis-Trans, Threo, Erythro and Meso isomers. Diastereomerism (Cis-Trans Isomerism) in Alkenes and Cycloalkanes (3 and 4 membered ring) Conformation: Conformations of Ethane, Difference between Configuration and Conformation. Configuration: Asymmetric Carbon Atom, Stereogenic/ Chiral Centers, Chirality, Representation of Configuration by "Flying Wedge Formula" Projection formulae – Fischer, Newman and Sawhorse, The Interconversion of the Formulae 		15

SEMESTER I

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT12	BIOORGANIC CHEMISTRY		
Course Outcomes	On successful completion of the course, the student will be introduced to the basic concepts of bioorganic molecules, their structure, classification and physicochemical characteristics. They will describe and define the structure, function, classification and properties of carbohydrates, lipids, proteins and nucleic acids.		
Unit I Biomolecules: Carbohydrates	Carbohydrates: Structure, Function, Classification. Characteristic Reactions, Physical and Chemical Properties, D & L-Glyceraldehyde, Structure of Monosaccharide, Disaccharides, and Polysaccharides. Isomers of Monosaccharides, Mutarotation Concept of Epimers, anomers. Chemical/Physical Properties of Carbohydrate Chemical Reactions for Detection of Mono-, Di- and Polysaccharides Structural and functional polysaccharides-examples Glycoproteins and proteoglycans-examples		15
Unit II Biomolecules: Amino acids and Proteins	 Amino Acids: Classification, Preparation and Properties, Isoelectric Point, Titration Curve of Amino Acids, Concept of Isoelectric pH, Zwitter ion, Structure of Peptides, Peptide Synthesis Proteins: Classification based on Structure and Functions, Primary Structure, N-terminal (Sanger and Edmans Method) and C-terminal Analysis (Enzyme) Reactions of Amino Acids, Sorenson's Titration, Ninhydrin Test, Denaturation of protein, Glycoproteins 	2	15
Unit III Biomolecules: Nucleic Acids and Lipids	 Nucleic Acids: Structure of Purine and Pyrimidine Bases, Structure of Nucleosides, Nucleotides and Polynucleotides DNA and RNA: Structure, types, and function of DNA and RNA, Properties of DNA and RNA, - Hydrogen Bonding between Nitrogenous Bases in DNA, Differences between DNA and RNA, cDNA, Denaturation, Annealing, Tm, Hypo & hyperchromic effect. Lipids: Classification of Lipids, Concept of Storage Lipids and Structural Lipids Properties of Saturated, Unsaturated Fatty Acids, Rancidity, and Hydrogenation of Oils Triacylglycerol, Phospholipids, Sphingo lipids, Sterols: Basic structure, function and examples Lipoproteins- Structure and Function 		15

COURSE CODE	URSE CODE TITLE		LECTURES	
SIUSBT13	BASIC LIFESCIENCE I: BIODIVERSITY AND CELL BIOLOGY			
Course	On successful completion of the course, student will be able to:			
Outcomes	 Discover and explain the diversity of life evolved over time via evolutionar mechanisms. describe and distinguish the structure and other salient characteristics of bacteria an 			
	viruses ;cell organelles of eukaryotic cell and their fu	nctions		
Unit I	Origin of Life, Chemical and Biological Evolution,			
Origin of Life and Biodiversity	Origin of Eukaryotic Cell Concept of Biodiversity, Taxonomical, Ecological and Genetic Diversity & its Significance			
(Plant, Animal &	• •			
Microorganisms)	Introduction to Plant Diversity: Algae, Fungi, Bryophyta, Pteridophytes, Gymnosperms and			
	Angiosperms (with one example each)		15	
	Introduction to Animal Diversity: Non-Chordates			
	and Chordates (with at least one representative			
	example)			
	Introduction to Microbial Diversity: Archaebacteria,			
	Eubacteria, Cyanobacteria, Actinomycetes, Eumycota-			
	Habitats, Examples and Applications.			
Unit II	Ultrastructure of Prokaryotic Cell: Concept of Cell			
	Shape and Size, Detail Structure of Slime Layer,			
Bacteria and	Capsule, Flagella, Pilli, Cell Wall (Gram Positive and			
Viruses	Negative), Cell Membrane, Protoplast and Spheroplast,	2		
	Cytoplasm and Genetic Material Storage Bodies and	-	15	
	Spores		15	
	Bacteria: Classification, Types, Morphology (Size,			
	Shape and Arrangement) Modes of cell division,			
	Significance of Bacteria			
	Introduction to Viruses: General Characters,			
	Classification (Plant, Animal and Bacterial Viruses)			
Unit III	Ultrastructure of Eukaryotic Cell: Plasma			
Ultrastructure of	membrane, Cytoplasmic Matrix, Microfilaments,			
Eukaryotic Cell	Intermediate Filaments, and Microtubules, Organelles			
Lunury one con	of the Biosynthesis- Endoplasmic Reticulum & Golgi			
	Apparatus, Lysosome, Endocytosis, Phagocytosis,		15	
	Autophagy, Proteasome Eukaryotic Ribosomes, Mitophondria and Chloroplasta Nucleus, Nucleur			
	Mitochondria and Chloroplasts, Nucleus –Nuclear Structure Nucleolus External Cell Coverings Cilia			
	Structure, Nucleolus, External Cell Coverings- Cilia and Flagella, Comparison of Prokaryotic and			
	Eukaryotic Cells			

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT14	BASIC LIFESCIENCE II: MICROBIAL TECHNIQUES		
Course	On successful completion of the course, Students will:		•
Outcomes	 Examine, identify the parts and use different microscopes for the s microorganisms which are among the basic skills expected from a pr microbiologist. Understand and explain the basic skills such as culturing microbes, mai microbes, good microbiological practices 		
	• perform basic experiments to determine the concer colorimetry	ntration of bion	nolecules using
Unit I	Microscope: Simple and Compound – Principle, Parts		
	and types, Aberration, Functions and Applications;		
Basic Techniques in	Dark Field, Phase Contrast		15
Microbiology	Colorimetry: Principle, Beer-Lambert's Law,		
i i i i i i i i i i i i i i i i i i i	Measurement of Extinction, Derivation of $E = kcl$,		
	Limitations of Beer-Lambert's Law, instrumentation		
Unit II	Stains and Staining Solutions: Definition of Dye and		
	Chromogen, Structure of Dye and Chromophore,		
Stains	Functions of Mordant and Fixative, Natural and		
	Synthetic Dyes, Classification, Simple Chemistry of		15
	stains, Staining, Differential Staining (Gram staining,		15
	Romanowsky's staining & Acid-Fast Staining with	2	
	specific examples)	2	
	Fluorescent stains, Fluorescence and phosphorescence,		
	Principles of metachromatic granules		
Unit III	Nutrition and Cultivation of Microorganisms:		
Nutrition and	Nutritional Requirements – Carbon, Oxygen,		
Nutrition and Cultivation of	Hydrogen, Nitrogen, Phosphorus, Sulphur and Growth		
Microorganisms	Factors.		
	Classification of Different Nutritional types of		15
	Organisms, Design and Types of Culture Media: Simple		
	Medium, Differential, Selective and Enriched Media		
	Sterilization of media and glasswares, Concept of		
	Isolation and Methods of Isolation, Pure Culture		
	Techniques		

COURSE CODE	TITLE	CREDITS	LECTURES	
SIUSBT15	BIOTECHNOLOGY I: INTRODUCTION TO BIOTECHNOLOGY			
Course	On successful completion of the course, students will be able to:			
Outcomes	 define biotechnology, provide examples of biotechnology products give examples of job responsibilities associated with different branches i biotechnology 			
	 describe the role of microorganisms in the production food packaging. understand and identify the different types of reactor for laboratory, pilot and industrial scale fermentations 	s or fermenters	0	
Unit I	History & Introduction to Biotechnology,			
Introduction and applications of	What is Biotechnology? Definition of Biotechnology, Traditional and Modern Biotechnology Branches of Biotechnology and applications- Plant,		15	
Biotechnology	Animal, Marine, Agriculture, Healthcare, Industrial, Pharmaceutical and Environmental Biotechnology. Application of Enzymes in Biotechnology, Ethics in Biotechnology		15	
Unit II	Scope of Food technology, Primary sources of microorganisms in food, Microbial role in food products: Bacteria, Molds and yeasts.			
Food Biotechnology	Food Deterioration and its Control. Unit Operation in Food Processing, General principles of food preservation- asepsis, heat treatment, pasteurization, Irradiation, appertization.	2	15	
	Modern Biotechnological Regulatory Aspects in Food Industries Biotechnology and Food - Social Appraisal			
	Introduction to food packaging, food product labels and categories			
Unit III	Fermenters: Definition, Characteristics, Types of fermenters:			
Fermentation Biotechnology	Surface and Submerged; Batch and Continuous, Aerobic and Anaerobic. Product Isolation and Purification. Solid state fermenter, Basic structure of stirred tank fermenters		15	
	Fermentation Technology: Definition, Applications of Fermentation Technology, Microbial Fermentations			

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT16	BIOTECHNOLOGY II: MOLECULAR BIOLOGY & GENETICS		
Course	On successful completion of the course, students will be able	to:	
Outcomes	 Describe the process of semi-conservative DNA replicompare this method with DNA synthesis in prokaryo Describe different types and mutations and repair med Understand and identify the three well known mechanis transferred among the microorganisms namely traconjugation. 	otes. chanism. isms by which g	enetic material
Unit I Replication	DNA Replication in Prokaryotes and Eukaryotes- Semi-conservative DNA replication, DNA Polymerases and its role, <i>E. coli</i> Chromosome Replication, Bidirectional Replication of Circular DNA molecules, Rolling Circle Replication, DNA Replication in Eukaryotes, DNA Recombination –Holliday Model for Recombination, End replication problem, Action of telomerase		15
Unit II Mutation and DNA Repair	Definition and Types of Mutations, Mutagenesis and Mutagens (Examples of Physical, Chemical and Biological Mutagens) Types of Point Mutations DNA repair – Photo reversal, Base Excision Repair, Nucleotide Excision Repair, Mismatch Repair, SOS Repair and Recombination Repair, Ames test	2	15
Unit III Microbial Genetics	Genetic analysis in Bacteria- Prototrophs, Auxotroph. Mechanism of Genetic Exchange in Bacteria- Conjugation; Transformation; Transduction (Generalized Transduction, Specialized Transduction); Introduction to Bacterial Transposable Elements Bacteriophages – Lytic and Lysogenic cycle		15

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT17	ABILITY ENHANCEMENT COURSE I (FC): SOCIETAL AWARENESS		
Course	On successful completion of the course, students will be able		
Outcomes	 Understand and explain the concept of the Indian cor identify with the diversity, disparity, as well as the pro- 		ty
Unit I	Understand the multi-cultural diversity of Indian		
Overview of	society through its demographic composition:		
Indian Society	population distribution according to religion, caste, and		
mulan Society	gender; Appreciate the concept of linguistic diversity in		15
	relation to the Indian situation; Understand regional		
	variations according to rural, urban and tribal		
	characteristics; Understanding the concept of diversity		
	as difference		
TT *4 TT	Concept of Disparity- I : Understand the concept of		
Unit II	disparity as arising out of stratification and inequality;		
Concept of	Explore the disparities arising out of gender with special		
Disparity	reference to violence against women, female foeticide		
	(declining sex ratio), and portrayal of women in media;		
	Appreciate the inequalities faced by people with		
	disabilities and understand the issues of people with		15
	physical and mental disabilities		
	Concept of Disparity-II: Examine inequalities	2	
	manifested due to the caste system and inter-group		
	conflicts arising thereof; Understand inter-group		
	conflicts arising out of communalism; Examine the		
	causes and effects of conflicts arising out of regionalism		
	and linguistic differences		
Unit III	The Indian Constitution: Philosophy of the		
	Constitution as set out in the Preamble; The structure of		
The Indian Constitution and	the Constitution-the Preamble, Main Body and		
Significance	Schedules; Fundamental Duties of the Indian Citizen;		
Aspects of	tolerance, peace and communal harmony as crucial		
Political	values in strengthening the social fabric of Indian		15
Processes	society; Basic features of the Constitution		
	Significant Aspects of Political Processes: The party		
	system in Indian politics; Local self- government in		
	urban and rural areas; the 73rd and 74th Amendments		
	and their implications for inclusive politics; Role and		
	significance of women in politics		

Sem I Topics for Project Guidance: Growing Social Problems in India:

- Substance abuse- impact on youth & challenges for the future
- *HIV/AIDS* awareness, prevention, treatment and services
- Problems of the elderly-causes, implications and response
- Issue of child labor magnitude, causes, effects and response
- Child abuse effects and ways to prevent
- Gender awareness and sensitization in the society regarding rights of women
- Trafficking of women-causes, effects and response

SEMESTER I (Practicals)

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS		
SIUSBTP18	Basic Chemistry	2	30 hrs		
	On successful completion of the	e course, the student w	vill able to report the presence		
Course outcome	of various functional groups present in the organic compounds, use colorimeter to				
Course outcome	determine the absorption maxima of various compounds and estimate the				
	concentration of various compounds.				
1. Spot test for co	mpounds belonging to Carbox	ylic Acid, Phenol, Al	dehyde/Ketone, Ester,		
Alcohol, Amine	e, Nitro Compounds, Haloalka	ne, Haloarene			
2. Verification of	2. Verification of Beer Lamberts Law and determination of absorption maxima				
3. Spot test for Carbohydrates, Fats and Proteins and Amino Acids, and Nucleic Acids					
4. Estimation of reducing sugar by DNSA method					
5 Estimation of Protein by Biuret method and Lowry method					

- 5. Estimation of Protein by Biuret method and Lowry method
- 6. Estimation of Acid number and Iodine value of Oil

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS	
SIUSBTP19	Basic Life Sciences	2	30 hrs	
Course outcome	On successful completion of the course, the student will able to infer the importation of the routine laboratory equipment. They would be skilled to perform rou microbiological experiments like staining, media preparation & sterilization. The will also be able to cultivate, isolate & characterize microorganisms.		be skilled to perform routine eparation & sterilization. They	
1. Introduction of laboratory instruments-Autoclaye. Hot air Oven, Incubator, pH meter, Rotary				

- 1. Introduction of laboratory instruments-Autoclave, Hot air Oven, Incubator, pH meter, Rotary Shaker and Centrifuge
- 2. Components and working of Simple, Compound, Dark Field and Phase Contrast Microscope
- 3. Staining and study of Plant and Animal Tissues
- 4. Special Staining Technique for Cell Wall, Capsule, Lipid granules and Endospores, and Fungal Staining
- 5. Monochrome Staining, Negative staining, Differential Staining Gram Staining,
- 6. Study of Permanent slides of Cyanobacteria
- 7. Sterilization of media and glassware
- 8. Aseptic transfer
- 9. Preparation of Media- Nutrient broth and Agar, MacConkey Agar, Sabourauds Agar
- 10. Isolation of Organisms : T-streak, Polygon method
- 11. Colony Characteristics of Microorganisms

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS	
SIUSBTP20	Basic Biotechnology	2	30 hrs	
Course outcome	bacteriological quality of milk,	On successful completion of the course, the student will able to analyze the bacteriological quality of milk, determine and extract milk protein. They would be able to extract & assess the quality of DNA isolated from plant source.		
 Isolation of organisms causing Food Spoilage Microscopic determination of Microshiel flore from Vachurt 				

- 2. Microscopic determination of Microbial flora from Yoghurt
- 3. Analysis of Milk- Methylene Blue, Resazurin Test
- 4. Extraction of Casein from Milk and Pynes method
- 5. Meat Tenderization using Papain
- 6. Isolation and purification of DNA from plant source (Onion)

SEMESTER II

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT21	BASIC CHEMISTRY II		
Course	On successful completion of the course, Student will be able t		
Outcomes	 Prepare buffers and learn the handling of basic chromatography and colorimetry. Describe the fundamentals of acid/base equilibria, buffer Estimate the strength of acids and bases and determine the strength of acids and bases are strength of acids are streng	behavior, acid	_
Unit I	Chemistry of Water: Properties of Water, Interaction of Water with Solutes (Polar, Non-Polar, Charged),	r	
Water and buffers	Non-Polar Compounds in Water – Change in its Structure and the Hydrophobic Effect, Role of Water in Biomolecular Structure and Function, Water as a Medium for Life Solutions: Normality, Molarity, Molality, Mole fraction, Mole concept, Solubility, Weight ratio, Volume ratio, Weight to Volume ratio, ppb, ppm, millimoles, milliequivalents (Numericals expected). Primary and Secondary Standards: Preparation of Standard Solutions, Principle of Volumetric Analysis. Acids and Bases: Lowry-Bronsted and Lewis Concepts. Strong and Weak Acids and Bases - Ionic Product of Water - <i>pH</i> , <i>pKa</i> , <i>pKb</i> . Hydrolysis of Salts. Buffer solutions: Concept of Buffers, Types of Buffers, Derivation of Henderson equation for Acidic and Basic buffers, Buffer action, Buffer capacity (Numericals expected) pH of Buffer Solution.	2	15
Unit II Titrimetry and Gravimetry	Titrimetric Analysis: Titration, Titrant, Titrand, End Point, Equivalence Point, Titration Error, Indicator, Primary and Secondary Standards, Characteristics and examples Types of Titration: Acid –Base, Redox. Precipitation, Complexometric Titration. Acid – Base Titration Strong Acid Vs Strong Base -Theoretical aspects of		15
	 Titration Curve and End Point Evaluation. Theory of Acid –Base Indicators, Choice and Suitability of Indicators. Gravimetric Analysis: Introduction, principle, Solubility and Precipitation, Factors affecting 		

Solubility, Nucleation, Particle Size, Crystal Growth, Colloidal State, Ageing/Digestion of Precipitate. Co-Precipitation and Post-Precipitation. Washing, Drying and Ignition of Precipitate. (Numerical Expected).		
Unit III Analytical Techniques	Analytical Techniques Chromatography: Definition, Principles, Types, Introduction to Paper Chromatography -Ascending, Descending and Radial, Thin Layer Chromatography, Introduction to Column Chromatography-Principle, and its Applications.	15

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT22	PHYSICAL CHEMISTRY		
Course	On successful completion of the course, students will be able	•	
Outcomes	• the thermodynamic and kinetic forces involved determine how much and how soon products are form	ned	
	• the fundamentals of acid/base reactions, redox reactions	ns and precipita	tion reactions
Unit I	Thermodynamics: System, Surrounding, Boundaries		
	Sign Conventions, State Functions, Internal Energy and		
Thermo-	Enthalpy: Significance, examples, (Numericals		
dynamics	expected.)		
	Laws of Thermodynamics and its Limitations,		15
	Mathematical expression. Qualitative discussion of		15
	Carnot Cycle for ideal Gas and Mechanical Efficiency.		
	Laws of Thermodynamics as applied to Biochemical		
	Systems. Concept of Entropy, Entropy for Isobaric,		
	Isochoric and Isothermal Processes.	2	
	Reaction Kinetics:		
Unit II	Rate of Reaction, Rate Constant, Measurement of		
Chemical	Reaction Rates Order & Molecularity of Reaction,		
Kinetics	Integrated Rate Equation of First and Second order		
	reactions (with equal initial concentration of reactants).		15
	(Numericals expected)		15
	Determination of Order of Reaction by a) Integration		
	Method b) Graphical Method c) Ostwald 's Isolation		
	Method d) Half Time Method. (Numericals expected).		
	wented dy man mine wethod. (Numericals expected).		

Unit III	Principles of Oxidation & Reduction Reactions:			
	Oxidizing and Reducing Agents, Oxidation Number,			
Oxidation and	Rules to assign Oxidation Numbers with examples tons		15	
	Reduction like Oxalate, Permanganate and Dichromate.			
Keactions	Reactions Intervention Permanganate and Distribution Balancing Redox Reactions by Ion Electron Method			
	Oxidation, Reduction, Addition and Substitution &			
	Elimination Reactions			

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT23	LIFESCIENCE I : PHYSIOLOGY AND ECOLOGY		
Course	On successful completion of the course, student will be able to	demonstrate the	understanding
Outcomes	of:		
Outcomes	Photosynthesis and the fundamental reactionsDigestion, respiration and circulation in animals		
	 Digestion, respiration and circulation in animals Presence and role of different types of enviro 	onments and b	nabitats where
	microorganisms grow such as the microbiomes of the		
Unit I	Photosynthesis, Intracellular Organization of		
	Photosynthetic System.		
Plant Physiology	Fundamental Reactions of Photosynthesis,		
	Photosynthetic Pigments, Role of Light. Hill Reaction		15
	and its Significance, Light Reactions, Cyclic and Non-		15
	Cyclic Photo Induced Electron Flow, Energetics of		
	Photosynthesis, Photorespiration, Dark Phase of		
	Photosynthesis, Calvin Cycle, C-3, C-4 pathways,		
	CAM pathway		
Unit II	Physiology of Digestion, Movement of Food and		
	Absorption, Secretary functions of Alimentary Canal,		
Animal Physiology	Digestion and Absorption, assimilation in Gut of	2	
Physiology	Mammals		
	Anatomy of Mammalian Kidney, Structure of Nephron,		
	Physiology of Urine Formation and Role of Kidney in		
	Excretion and Osmoregulation		15
	Physiology of Respiration, Mechanism of Respiration,		13
	Principles of Gaseous Exchange in the Blood and Body		
	Fluids		
	Blood and Circulation: Blood Composition, Structure		
	and Function of its Constituents, Blood Coagulation and		
	Anti- Coagulants, Hemoglobin and its Polymorphism		
	Regulation of the Circulation Mechanism and working		
	of Heart in Human.		

Unit III	Ecology and Biogeography.	
	Ecosystems, Definition and Components, Structure and	
Ecosystems and	Function of Ecosystems. Aquatic and Terrestrial	
Interactions	Ecosystems, Biotic and Abiotic Factors, Trophic	
	Levels, Food Chain and Food Web, Ecological	15
	Pyramids (Energy, Biomass and Number)	
	Nutrient Cycle and Biogeochemical Cycles: Water,	
	Carbon, Oxygen, Nitrogen and Sulphur.	
	Interactions, Commensalism, Mutualism, Predation and	
	Antibiosis, Parasitism.	

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT24	LIFE SCIENCES II: GENETICS AND RDNA TECHNOLOGY		
Course	On successful completion of the course, students will be will		
Outcomes	 laws of inheritance, genetic basis of loci and alleles principles Hardy-Weinberg law and explain the assumptions enzymes used in genetic engineering and explain their full 		from Mendelian
Unit I	Genotype and Phenotype, Mendel's Laws of Heredity		
	Monohybrid Cross: Principle of dominance and		
Fundamentals of Genetics	segregation. Dihybrid Cross: Principle of independent		
of Genetics	assortment.		15
	Application of Mendel's Principles, Punnett Square		15
	Mendel's Principle in Human Genetics, Incomplete		
	Dominance & Co-dominance Multiple Alleles. Gene		
	Interaction- Epistasis Extra-chromosomal inheritance-		
	Chloroplast and Mitochondria		
Unit II	Genetic Structure of Populations – Genotypic		
	Frequencies and Allelic Frequencies, Hardy- Weinberg	2	
Population Genetics	Law and its assumptions, Genetic Variations in	2	15
Genetics	Populations- Measuring Genetic Variation at Protein		15
	Level and measuring Genetic Variations at DNA level		
	Natural Selection, Genetic Drift, Speciation, Role of		
	population genetics in conservation biology		
Unit III	Experimental evidences for DNA and RNA as Genetic		
	Material, Genetic Engineering in E.coli and other		
Genetic	Prokaryotes, Yeast, Fungi and Mammalian Cells,		15
Engineering	Cloning Vectors-Plasmids (pBR 322, pUC). Enzymes-		15
	DNA Polymerases, Restriction Endonucleases, Ligases,		
	Reverse Transcriptases, Nucleases, Terminal		
	Transferases, Phosphatases		

COURSE CODE	TITLE	CREDITS	LECTURES		
SIUSBT25	BIOTECHNOLOGY I: MICROBIAL TECHNIQUES AND TISSUE CULTURE				
Course	On successful completion of the course, students will be to				
Outcomes	 Describe the principles which underlie sterilization of culture media, glassware an plastic ware to be used for microbiological work Identify nutritional requirements of bacteria for growth; methods to preserve bacter in the laboratory; calculate generation time of growing bacteria Explain the basics of animal and plant tissue culture 				
Unit I	Definition: Sterilization and Disinfection				
Sterilization Techniques	Types and Applications: Dry Heat, Steam under pressure, Gases, Radiation and FiltrationChemical Agents and their Mode of Action:		15		
	Aldehydes, Halogens, Quaternary Ammonium Compounds, Phenol and Phenolic Compounds, Heavy Metals, Alcohol, Dyes, and Detergents Ideal Disinfectant: Properties, Examples of				
	Disinfectants and Evaluation of Disinfectant				
Unit II Growth and Enumeration of Microorganisms	 Growth: Growth Phases, Growth Curve, Arithmetic Growth and Growth Yield, Measurement of Growth, Chemostat and Turbidostat Enumeration of Microorganisms: Direct and Indirect Methods Preservation of Cultures: Principle and Methods, Cryogenic Preservation Advantages and Limitations 	2	15		
	Basics of Plant Tissue Culture:				
Unit III Plant and Animal Tissue Culture	Cell Theory, Concept of Cell Culture: Cell Theory, Concept of Cell Culture, Cellular Totipotency, Design of PTC lab with equipment Basics of Animal Tissue Culture: Introduction to Animal Cell Cultures, equipment such as medium filtration devices, cell counters, liquid- nitrogen-storage tanks etc. Design of ATC lab. Applications of PTC and ATC such as Clonal and micro-propagation, Secondary metabolite production commercial production of plants Cell lines for vaccine production, therapeutic proteins, pharmaceutical agents, and anti-cancerous agents		15		

COURSE CODE	TITLE	CREDITS	LECTURES		
SIUSBT26	BIOTECHNOLOGY II : ENZYMOLOGY AND IMMUNOLOGY				
Course	On successful completion of the course, students will be to:	On successful completion of the course, students will be to:			
Outcomes	 Classify the enzymes and explain mechanism of action and structure, study enzyme kinetics and calculate Vmax, Km values. Conceptualize and explain the protective role of the immune system of the host and developed an understanding of the basic components as well as the mechanisms underlying the immune system and its response to pathogenic microorganisms. Correlate & deduce the applications of enzymes and antibodies. 				
Unit I	Definition, Classification, Nomenclature, Chemical Nature, Properties of Enzymes, Co- Factors, Zymogens,				
Enzymes	Active Sites, Enzyme Specificity, Mechanism of Enzyme Action, Effect of pH, Temperature and Substrate Concentration on Enzyme Activity, Enzyme Kinetics, Michelis - Menten Equation, Types of Enzyme Inhibitions - Competitive, Uncompetitive, Non-Competitive Allosteric, Modulators.		15		
Unit II Immunology	Overview of Immune Systems, Cell and Organs involved, Types of immunity: Innate Immunity, Acquired Immunity, Local and Herd Immunity, Humoral and Cellular Immunity - Factors Influencing and Mechanisms of each. Antigens and Antibodies: Types of Antigens, General Properties of Antigens, Haptens and Superantigens Discovery and Structure of Antibodies (Framework region) Classes of Immunoglobulins, Antigenic Determinants.	2	15		
Unit III Applications of Enzymology and Immunology	Application of enzymes in food, Pharmaceutical, pulp, textile and other industries; diagnostic & therapeutic applications. Immobilized enzymes-Techniques of enzyme immobilization; applications of immobilized enzymes. Vaccines- Introduction and types, Hybridoma- Monoclonal Antibody production; MAbs in diagnosis and therapy, Polyclonal antibody production and its application.		15		

COURSE CODE	TITLE	CREDITS	LECTURES
SIUSBT27	ABILITY ENHANCEMENT COURSE 2 (FC): GLOBALIZATION, ECOLOGY AND SUSTAINABLE DEVELOPMENT		
Course Outcomes	On successful completion of the course, students will be to globalization, ecology and environment as well the problems		the concepts of
Unit I	Globalization and Indian Society: Understanding the		
Globalization and Indian Society and Human Rights	concepts of liberalization, privatization and globalization; Growth of information technology and communication and its impact manifested in everyday life; Impact of globalization on industry: changes in employment and increasing migration; Changes in agrarian sector due to globalization; rise in corporate farming and increase in farmers' suicides. Human Rights: Concept of Human Rights; origin and evolution of the concept; The Universal Declaration of Human Rights; Human Rights constituents with special reference to Fundamental Rights stated in the		15
	Constitution		
Unit II Ecology and Sustainable Development	Ecology and Sustainable Development: Importance of Environment Studies in the current developmental context; Understanding concepts of Environment, Ecology and their interconnectedness; Environment as natural capital and connection to quality of human life; Environmental Degradation causes and impact on human life; Sustainable development, concept and components; poverty and environment	2	15
Unit III Understanding and Managing Stress and Conflict in Contemporary Society	Understanding Stress and Conflict: Causes of stress and conflict in individuals and society; Agents of socialization and the role played by them in developing the individual; Significance of values, ethics and prejudices in developing the individual; Stereotyping and prejudice as significant factors in causing conflicts in society. Aggression and violence as the public expression of conflict Managing Stress and Conflict in Society: Types of conflicts and use of coping mechanisms for managing individual stress; Maslow's theory of self-actualization; Different methods of responding to conflicts in society; Conflict-resolution and efforts towards building peace and harmony in society		15

Sem II Topics for Project Guidance: Growing Social Problems in India:

- Increasing urbanization, problems of housing, health and sanitation
- Changing lifestyles and impact on culture
- Farmers' suicides and agrarian distress
- Debate regarding genetically modified crops
- Development projects and human rights violations
- Increasing crime/suicides among youth
- Environment and Sustainable Development-integration of economic, social and environmental aspects towards a balanced holistic concept of sustainable development

SEMESTER II (Practicals)

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS		
SIUSBTP28	Chemistry	2	30 hrs		
	On successful completion of th	ne course, students wil	l be able to prepare standard		
Course Outcomes	solutions, evaluate the strength	& quantify various con	mpounds. They would also be		
Course Outcomes	able to examine & separate an	nino acid mixtures us	ing a basic chromatographic		
	separation method.				
1. Preparation of S	Standard (Molar, Molal and No	ormal solutions) and	Buffer Solutions		
2. To determine en	nthalpy of dissolution of salt li	ke KNO ₃			
3. Study the kinet	ics of reaction between thiosul	phate ion and HCl			
4. Determination	of the volume strength of I	hydrogen peroxide	solution by titration with		
standardized po	tassium permanganate solution	n			
5. Determination	of amount of K oxalate and ox	alic acid in the given	solution titrimetrcially		
6. Determination	of strength of HCl in commerc	ial sample			
7. To Standardize	commercial sample of NaOH	using KHP (Potassiu	m hydrogen phthalate)		
8. Determination	of amount of NaHCO ₃ + Na ₂ CO	O ₃ in the given solid	mixture titrimetrcially		
9. Determination					
10. Determination	10. Determination of percent composition of BaSO ₄ and NH ₄ Cl in the given mixture				
gravimetrically					
11. Separation of an	11. Separation of amino acids by paper chromatography				

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS
SIUSBTP29	Life Sciences	2	30 hrs
Course Outcomes	On successful completion of the course, students will be able to demonstrate Hill's reaction and colorimetrically analyze various photosynthetic pigments. Students will also be skilled to perform blood cell count, estimate hemoglobin levels and mitosis.		
1. Study of Hill 's reaction			

- 2. Colorimetric study of Absorption Spectrum of Photosynthetic Pigments
- 3. Activity of Salivary Amylase on Starch
- 4. Study of Mammalian Blood, Blood count using Hemocytometer and estimation of Hemoglobin in Mammalian Blood (PowerPoint)
- 5. Study of Human Blood Groups
- 6. Study of Mammalian Kidney and Heart
- 7. Differential staining of Blood cells
- 8. Problems in Mendelian Genetics
- 9. Study of Mitosis
- 10. Study of Interactions Commensalism, Mutualism, Predation and Antibiosis, Parasitism

COURSE CODE	TITLE	CREDITS	NOTIONAL HOURS	
SIUSBTP30	Biotechnology	2	30 hrs	
	On successful completion of the course, students will be able to prepare various stock			
	solutions for plant tissue culture experiments and use to cultivate callus. They will			
Course Outcomes	calculate the growth rate of bacteria, perform various enumeration techniques to			
	count animal & bacterial cell as well as deduce the effect of various factors on			
	enzyme.			
1. Preparation of Stock Solutions and Preparation of Media for PTC				
2. Aseptic Transfer Technique, Surface Sterilization and Inoculation for Callus Culture				
3. Trypsinization of Tissue and Viability Count				
4. Qualitative Assay of Enzyme Amylase, Urease, Lipase, Catalase and Dehydrogenase				
5. Enzyme Kinetics : Study of the effect of pH, Temperature on activity of Enzyme				
6. Enumeration of microorganism by pour plate and spread plate method				
7. Enumeration by Breed's count				
8. Growth curve of <i>E. coli</i>				
9. Encapsulation of	ation of yeast and estimation of invertase activity			

EVALUATION SCHEME

The performance of the learner shall be evaluated into TWO Parts.

The learner's performance shall be assessed by Internal Assessment of **40 Marks** and Semester End Examination (theory) of **60 Marks for each term**.

Practical examination will be conducted at end of each semester for 300 Marks.

The allocation of marks for the Internal Assessment and Semester End Examinations are as follows:-

Internal Assessment – 40 Marks

There will be **two** internal assessment tests:

S. No.	Particulars	Marks
1.	Internal Assessment 1 - Centralized	20 Marks
2.	Internal Assessment 2 - Departmental	20 Marks

Semester End Examination – 60 Marks

S. No.	Particulars	Marks
	All questions are compulsory	
	Number of questions -4 (Four)	
	Each question carries 12 Marks	
1.	Q1 – Unit I	
	a. Answer in one sentence (any three out of five)	3 Marks
	b. Short answers (any three out of five)	12 Marks
2.	Q2 – Unit II	
	a. Answer in one sentence (any three out of five)	3 Marks
	b. Short answers (any three out of five)	12 Marks
3.	Q3 – Unit III	
	a. Answer in one sentence (any three out of five)	3 Marks
	b. Short answers (any three out of five)	12 Marks
4.	Q4. Short notes (medley of all units) (Any three out of five)	
		12 Marks
	TOTAL	60 Marks

References:

- 1. Applegate, E. (2014). Study guide for the anatomy and physiology learning system-e-book. Elsevier Health Sciences.
- 2. Arora, P. N., & Malhan, P. K. (2010). Biostatistics. Himalaya Publishing House.
- 3. Bahl, B.S., Tuli, G.D. & Bahl, A. (2000). Essentials of physical chemistry, 24th edn. S. Chand & Company Limited.
- 4. Baker, T. A., Watson, J. D., Bell, S. P., Gann, A., Losick, M. A., & Levine, R. (2003). Molecular biology of the gene. Benjamin-Cummings Publishing Company.
- 5. Chang, R. (2005). Physical chemistry for the biosciences, 1st edn. University Science Books.
- 6. Chaudhuri, S. K. (1997). Concise medical physiology. New Central Book Agency.
- 7. Concise Inorganic Chemistry, 5th edition, (2008). Author: J.D. Lee, john Wiley & Sons, USA.
- 8. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry. John Wiley & Sons.
- 9. Cooper, G. M., & Hausman, R. E. (2004). The cell: molecular approach. Medicinska naklada.
- 10. De, K. K. (1997). Plant tissue culture. New Central Book Agency.
- 11. Dubey, R.C. (2014). Advanced Biotechnology. S. Chand & Company Limited.
- 12. Frazier, W. C., & Westhoff, D. C. (1988). Food microbiology, 4th edn. McGraw-Hill.
- 13. Freshney, R. I. (2015). Culture of animal cells: a manual of basic technique and specialized applications. John Wiley & Sons.
- 14. Frobisher, M., Hinsdill, R., Crabtree, K.T. & Goodheart, C.R. (1968). Fundamentals of microbiology, 8th edn. W.B. Saunders Co.
- 15. Gangal, S. (2007). Principles and practice of animal tissue culture. Universities Press.
- 16. Guyton, A. C. (1979). Physiology of the human body. Saunders Limited.
- 17. Hall, J. E. (2015). Guyton and Hall textbook of medical physiology. Elsevier Health Sciences.
- 18. Jain, J.L., Jain, S. & Jain, N. (2016). Fundamentals of Biochemistry, 7th edn. S. Chand & Company Limited.
- 19. Jordan, E.L. and Verma, P. S. (1978). Chordate zoology. S. Chand & Company Limited.
- 20. Jordan, E.L. and Verma, P. S. (1978). Invertebrate Zoology. S. Chand & Company Limited.
- 21. Karp, G. (2009). Cell and molecular biology: concepts and experiments. John Wiley & Sons.
- 22. Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2007). Kuby immunology, 6th edn. Macmillan.
- 23. Kotpal, R. L. (2012). Modern text book of zoology: invertebrates. Rastogi Publications.
- 24. Lee, J.D. (2008). Concise inorganic chemistry, 5th edn. John Wiley & Sons.
- 25. Marieb, E. N., & Hoehn, K. (2007). Human anatomy & physiology. Pearson Education.
- 26. Mendham, J. (2006). Vogels textbook of quantitative chemical analysis. Pearson Education India.
- 27. Mitra, S. (1996). Genetic engineering: principles and practice. McGraw-Hill Education.
- 28. Morrison, R.T. & Boyd, R.N. (1992). Organic chemistry. Pearson Education Inc.
- 29. Mu, P., & Plummer, D. T. (1988). Introduction to practical biochemistry. Tata McGraw-Hill Education.
- 30. Murphy, K.M. & Weaver, C. (2017). Janeway's immunology, 9th edn. W.W. Norton and Company.
- 31. Narayan, A., Paniker. (2009). Text Book of Microbiology. Universities Press.
- 32. Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. Macmillan.
- 33. Patel, A.H. (2015). Industrial microbiology, 2nd edn. Laxmi Publications.
- 34. Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (2001). Microbiology, 5th edn. Tata McGraw-Hill publications.

- 35. Rao, C. V. (2002). An introduction to immunology. CRC Press.
- 36. Rao, C.N.R. (2000). University general chemistry, 1st edn. Macmillan India Ltd.
- 37. Razdan, M. K. (2003). Introduction to plant tissue culture. Science Publishers.
- 38. Russell, P. J., & Gordey, K. (2002). IGenetics, 3rd edn. San Francisco: Benjamin Cummings.
- 39. Salle, A. J. (1973). Fundamental principles of bacteriology (Vol. 7). McGraw-Hill.
- 40. Satyanarayan, U., & Chakrapani, U. (1999). Textbook of Biochemistry. Books and Allied Pvt Ltd.
- 41. Sharma, B. K. (2000). Instrumental methods of chemical analysis. Krishna Prakashan Media.
- 42. Singh, B. D. (2015). Fundamentals of Genetics. Kalyani Publishers.
- 43. Singh, B. K. (2004). Biodiversity: Conservation and Management. Mangal Deep Publications.
- 44. Singh, B.D. (2017). Biotechnology. Kalyani Publishers.
- 45. Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. (2013). Fundamentals of analytical chemistry. Nelson Education.
- 46. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). Principles of fermentation technology. Elsevier.
- 47. Verma, P. S., Agarwal, V. K., & Verma, P. S. (2007). Cell biology, genetics, molecular biology, evolution and ecology. S. Chand & Company Limited.
- 48. Verma, V. (2011). Textbook of plant physiology. Ane Books Pvt Ltd.
- 49. West, E. S., Todd, W. R., Mascon, H. S., & Van Bruggen, J. T. (1974). Textbook of biochemistry. Oxford and IBH Publishing.
- 50. Willey, J.M., Sherwood, L., Woolverton, C.J. (2008). Prescott, Harley and Klein's Microbiology. McGraw-Hill.